
2CHAPTEROperating -
System
Structures

Practice Exercises

2.1 What is the purpose of system calls?

Answer:
System calls allow user-level processes to request services of the operat-
ing system.

2.2 What is the purpose of the command interpreter? Why is it usually
separate from the kernel?

Answer:
It reads commands from the user or from a �le of commands and exe-
cutes them, usually by turning them into one or more system calls. It is
usually not part of the kernel because the command interpreter is subject
to changes.

2.3 What system calls have to be executed by a command interpreter or shell
in order to start a new process on a UNIX system?

Answer: A fork() system call and an exec() system call need to be
performed to start a new process. The fork() call clones the currently
executing process, while the exec() call overlays a new process based
on a different executable over the calling process.

2.4 What is the purpose of system programs?

Answer:
System programs can be thought of as bundles of useful system calls.
They provide basic functionality to users so that users do not need to
write their own programs to solve common problems.

2.5 What is the main advantage of the layered approach to system design?
What are the disadvantages of the layered approach?

Answer:
As in all cases of modular design, designing an operating system in a
modular way has several advantages. The system is easier to debug and
modify because changes affect only limited sections of the system rather

7



8 Chapter 2 Operating-System Structures

than touching all sections. Information is kept only where it is needed
and is accessible only within a de�ned and restricted area, so any bugs
affecting that data must be limited to a speci�c module or layer. The
primary disadvantage to the layered approach is th apoor performance
due to the overhead of traversing through the different layers to obtain
a service provided by the operating system.

2.6 List �ve services providedby an operating system, and explain howeach
creates convenience for users. In which cases would it be impossible for
user-level programs to provide these services? Explain your answer.

Answer:
The �ve services are:

a. Program execution. The operating system loads the contents (or
sections) of a �le into memory and begins its execution. A user-
level program could not be trusted to properly allocate CPU time.

b. I/O operations. It is necessary to communicate with disks, tapes,
and other devices at a very low level. The user need only specify
the device and the operation to perform on it, and the system
converts that request into device- or controller-speci�c commands.
User-level programs cannot be trusted to access only devices they
should have access to and to access them only when they are
otherwise unused.

c. File-system manipulation. There are many details in �le creation,
deletion, allocation, and naming that users should not have to per-
form. Blocks of disk space are used by �les and must be tracked.
Deleting a �le requires removing the name �le information and
freeing the allocated blocks. Protections must also be checked
to assure proper �le access. User programs could neither ensure
adherence to protection methods nor be trusted to allocate only
free blocks and deallocate blocks on �le deletion.

d. Communications. Message passing between systems requires
messages to be turned into packets of information, sent to the
network controller, transmitted across a communicationsmedium,
and reassembled by the destination system. Packet ordering and
data correction must take place. Again, user programs might not
coordinate access to the network device, or they might receive
packets destined for other processes.

e. Error detection. Error detection occurs at both the hardware and
software levels. At the hardware level, all data transfers must be
inspected to ensure that data have not been corrupted in transit. All
data on media must be checked to be sure they have not changed
since they were written to the media. At the software level, media
must be checked for data consistency—for instance, whether the
number of allocated and unallocated blocks of storage match the
total number on the device. There, errors are frequently process-
independent (for instance, the corruption of data on a disk), so
theremust be a global program (the operating system) that handles



Practice Exercises 9

all types of errors. Also,when errors are processed by the operating
system, processes need not contain code to catch and correct all the
errors possible on a system.

2.7 Why do some systems store the operating system in �rmware, while
others store it on disk?

Answer:
For certain devices, such as embedded systems, a disk with a �le system
may be not be available for the device. In this situation, the operating
system must be stored in �rmware.

2.8 How could a system be designed to allow a choice of operating systems
from which to boot? What would the bootstrap program need to do?

Answer:
Consider a system that would like to run bothWindows and three differ-
ent distributions of Linux (for example, RedHat, Debian, and Ubuntu).
Each operating system will be stored on disk. During system boot, a
special program (which we will call the boot manager) will determine
which operating system to boot into. This means that rather than ini-
tially booting to an operating system, the boot manager will �rst run
during system startup. It is this boot manager that is responsible for
determining which system to boot into. Typically, boot managers must
be stored at certain locations on the hard disk to be recognized during
system startup. Boot managers often provide the user with a selection of
systems to boot into; boot managers are also typically designed to boot
into a default operating system if no choice is selected by the user.




	Operating-System Structures
	Exercises


